4.6 Article

Macular segmentation with optical coherence tomography

期刊

INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE
卷 46, 期 6, 页码 2012-2017

出版社

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/iovs.04-0335

关键词

-

资金

  1. NEI NIH HHS [R01 EY013178-04, P30-EY089898, R01 EY011289-19, EY13178, R01-EY11289, P30 EY008098, R01 EY011289, P30 EY008098-17, R01 EY013178] Funding Source: Medline

向作者/读者索取更多资源

PURPOSE. To develop a software algorithm to perform automated segmentation of retinal layer structures on linear macular optical coherence tomography (StratusOCT; Carl Zeiss Meditec, Inc., Dublin, CA) scan images and to test its performance in discriminating normal from glaucomatous eyes in comparison with conventional circumpapillary nerve fiber layer (cpNFL) thickness measurement. METHODS. Four layer structures within the retina were defined: the macular nerve fiber layer (mNFL), the inner retinal complex (IRC; retinal ganglion cell [RGC] layer + inner plexiform and nuclear layers), outer plexiform layer (OPL), and outer retinal complex (ORC; outer nuclear layer + photoreceptor layer). Normal and glaucomatous eyes underwent fast macular map and fast NFL OCT scans. Linear macular images were analyzed using the developed algorithm, and the results were compared with the cpNFL thickness measurement. RESULTS. Forty-seven subjects (23 normal and 24 with glaucoma) were analyzed. mNFL, cpNFL, IRC, and the total retinal thicknesses were significantly greater in normal than in glaucomatous eyes (P <= 0.0002; Wilcoxon), whereas OPL thickness did not show a significant difference (P = 0.46). ORC thickness was significantly greater in glaucomatous than normal eyes (P = 0.035). Areas under the receiver operator characteristic curve (AROCs) for discriminating normal from glaucomatous eyes were highest with mNFL + IRC (0.97) and lowest with OPL (0.56). AROCs for OPL and ORC were significantly smaller than those for mNFL, IRC, mNFL + IRC, and cpNFL (P <= 0.01). AROCs for IRC, mNFL + IRC, and cpNFL were significantly larger than for retinal thickness (P <= 0.049). Among the best-performing parameters (mNFL, IRC, mNFL + IRC, and cpNFL) there was no significant difference in AROCs (P >= 0.15). CONCLUSIONS. The newly developed macular segmentation algorithm described herein demonstrated its ability to quantify objectively the glaucomatous damage to RGCs and NFL and to discriminate between glaucomatous and normal eyes. Further algorithm refinement and improvements in resolution and image quality may yield a more powerful methodology for clinical glaucoma evaluation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据