4.8 Article

Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites

期刊

APPLIED ENERGY
卷 85, 期 8, 页码 765-775

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2007.10.017

关键词

form-stable phase change materials (PCM); expandable graphite (EG); halogen-free flame retardant; thermal stability; latent heat; synergistic effect

向作者/读者索取更多资源

The halogen-free flame retardant form-stable phase change materials (PCM) based on paraffin/high density polyethylene (HDPE) composites were prepared by using twin-screw extruder technique. The structures and properties of the form-stable PCM composites based on intumescent flame retardant system with expandable graphite (EG) and different synergistic additives, such as ammonium polyphosphate (APP) and zinc borate (ZB) were characterized by scanning electronic microscope (SEM), thermogravimetric analyses (TGA), dynamic Fourier-transform infrared (FTIR) spectra, differential scanning calorimeter (DSC) and Cone calorimeter test. The TGA results showed that the halogen-free flame retardant form-stable PCM composites produced a larger amount of charred residue at 700 degrees C, although the onset of weight loss of the halogen-free flame retardant form-stable PCM composites occurred at a lower temperature due to the thermal decomposition of flame retardant. The DSC measurements indicated that the additives of flame retardant had little effect on the thermal energy storage property, and the temperatures of phase change peaks and the latent heat of the paraffin showed better occurrence during the freezing process. The dynamic FTIR monitoring results revealed that the breakdowns of main chains (HDPE and paraffin) and formations of various residues increased with increasing thermo-oxidation temperature. It was also found from the Cone calorimeter tests that the peak of heat release rate (PHRR) decreased significantly. Both the decrease of the PHRR and the structure of charred residue after combustion indicated that there was a synergistic effect between the EG and APP, contributing to the improved flammability of the halogen-free flame retardant form-stable PCM composites. (c) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据