4.6 Article

Biomechanical model of the xylem vessels in vascular plants

期刊

ANNALS OF BOTANY
卷 95, 期 7, 页码 1179-1186

出版社

OXFORD UNIV PRESS
DOI: 10.1093/aob/mci130

关键词

xylem vessel; vascular plant; constant strength; structural design; xylem cell wall; biomechanics

向作者/读者索取更多资源

* Background and Aims The xylem, or water transport system, in vascular plants adopts different morphologies that appear sequentially during growth phases. This paper proposes an explanation of these morphologies based on engineering design principles. Methods Using microscopic observations of the different growth stages, an engineering analysis of the xylem vessels as a closed cylinder under internal pressure is carried out adopting pressure vessel design concepts. Key Results The analysis suggests that the xylem vessel structural morphology follows the 'constant strength' design principle, i.e. all of the material within the wall of the xylem is loaded equally to its maximum allowable stress capacity, and the amount of material used is therefore systematically minimized. The analysis shows that the different structural designs of the xylem vessel walls (annular, helical, reticulate and pitted) all quantitatively follow the constant strength design principle. Conclusions The results are discussed with respect to growth and differentiation. It is concluded that the morphology of the xylem vessel through the different phases of growth seems to follow optimal engineering design principles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据