4.7 Article

Genetic manipulation of proline levels affects antioxidants in soybean subjected to simultaneous drought and heat stresses

期刊

PHYSIOLOGIA PLANTARUM
卷 124, 期 2, 页码 227-235

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1399-3054.2005.00504.x

关键词

-

向作者/读者索取更多资源

It was assumed that the genetic manipulation of the proline (Pro) level would also affect the (homo)glutathione content as both compounds have a common precursor, glutamate. To test this hypothesis, the levels of Pro, reduced and oxidized (homo)glutathione [(h)GSH and (h)GSSG] and other antioxidants were compared under simultaneous drought and heat stress conditions and in a control treatment in a time course experiment on wild-type soybean (Glycine max cv. Ibis) and on transgenic plants containing the cDNA coding for L-Delta(1)-pyrroline-5-carboxylate reductase (EC 1.5.1.2), the last enzyme involved in Pro synthesis, in the sense and antisense directions. At the end of the recovery period, the highest H2O2 and lipid hydroperoxide concentrations were observed in the antisense transformants, which exhibited the greatest injury, while the lowest H2O2 content was detected in the sense transformants, which exhibited the lowest injury percentage. During stress treatment, the highest Pro and ascorbate (AA) levels were detected in the sense transformants, while the highest GSH and hGSH contents, AA/dehydroascorbate (DHA) and (h)GSH/(h)GSSG ratios and ascorbate peroxidase (APX) activity were found in the antisense transformants. The greatest APX (EC 1.11.1.11) activity was observed in the first part of the stress treatment in the antisense transformants, and the greatest glutathione reductase (EC 1.6.4.2) activity was observed in the second part of the treatment in the same genotype. The present experiments indicate that the manipulation of Pro synthesis affects not only the (h)GSH concentrations, but also the levels of other antioxidants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据