4.2 Article

Acquisition and inversion of dispersive seismic waves in shallow marine environments

期刊

MARINE GEOPHYSICAL RESEARCH
卷 26, 期 2-4, 页码 287-315

出版社

SPRINGER
DOI: 10.1007/s11001-005-3725-6

关键词

acoustic guided waves; Scholte waves; dispersion analysis; wavefield inversion; shallow marine seismics; waveguides

向作者/读者索取更多资源

Two types of dispersive seismic waves have been acquired in different geological settings to investigate the potential to reveal the elastic parameters of the shallow marine subsurface. Scholte waves as well as acoustic guided waves are excited by a near-surface towed airgun, and recorded using two acquisition methods: (1) the towed-acquisition system using a hydrophone streamer towed close to the sea floor, and (2) the stationary-receiver method using Ocean-Bottom Seismometers and/or Hydrophones (OBS/OBH). Our diverse data sets reveal that the spatial sampling of the wavefield required to avoid aliasing may vary significantly for different geological settings. Scholte waves are characterised by a few distinct modes observed at low frequencies and low phase velocities. Their dispersion is mainly controlled by the depth profile of the shear-wave velocity. Acoustic guided waves show profound amplitude variations of numerous higher modes over a broad frequency range. These are sensitive to shear-wave velocity, but more sensitive to compressional-wave velocity than Scholte waves are. To avoid the identification of distinct modes we infer 1-D models of elastic parameters of the subsurface from the inversion of the full wavefield spectra of acoustic guided waves. In the Siberian Laptev Sea we infer the presence of a soft sediment layer (8-10 m) with a well resolved strong S-velocity gradient (150-450 m/s). In the Baltic Sea a low P-velocity layer with a strong vertical gradient (1250-1440 m/s) corresponding to a post-glacial gassy mud layer could be resolved, which agrees well with the sediment stratigraphy derived from a gravity core.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据