4.1 Article

Proton channel hydration and dynamics of a bacteriorhodopsin triple mutant with an M-state-like conformation

期刊

出版社

SPRINGER
DOI: 10.1007/s00249-004-0456-6

关键词

incoherent neutron scattering; neutron diffraction; mean square amplitudes; purple membranes; hydration

向作者/读者索取更多资源

The hydration and dynamics of purple membranes (PM) containing the bacteriorhodopsin (BR) triple mutant D96G/F171C/F219L were investigated by neutron diffraction coupled with H2O/D2O exchange and by energy-resolved neutron scattering. The mutant, which is active in proton transport (Tittor et al. in J. Mol. Biol. 319:555-565, 2002), has an 'open' ground-state structure similar to that of the M intermediate in the photocycle of the wild type (wt) (Subramaniam and Henderson in Nature 406:653-657, 2000). The experiments demonstrated an increased proton channel hydration in the mutant PM compared with wt PM, in both high (86%) and low (57%) relative humidity. We suggest that this is due to the smaller side chains of the mutant residues liberating space for more water molecules in the proton channel, which would then be able to participate in the proton translocation network. PM thermal dynamics has been shown to be very sensitive to membrane hydration (Lehnert et al. in Biophys. J. 75:1945-1952, 1998). The global dynamical behaviour of the mutant PM on the 100-ps time scale, as a function of relative humidity, was found to be identical to that of the wt, showing that the 'open' BR structure and additional water molecules in the proton channel do not provide softer environment enabling increased flexibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据