4.8 Article

AtPDR12 contributes to lead resistance in arabidopsis

期刊

PLANT PHYSIOLOGY
卷 138, 期 2, 页码 827-836

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.104.058107

关键词

-

向作者/读者索取更多资源

Arabidopsis ( Arabidopsis thaliana) contains about 130 ATP- binding cassette ( ABC) proteins, which are likely to contribute to the transport of diverse materials, including toxic substances. However, the substrates of ABC transporters remain unknown in most cases. We tested which ABC transporter is involved in detoxification of lead [ Pb( II)]. Among the many tested, we found that the message level of only AtPDR12 increased in both shoots and roots of Pb( II)- treated Arabidopsis, suggesting that it may be involved in the detoxification of Pb( II). AtPDR12- knockout plants ( atpdr12) were used to further test this possibility. In Pb( II)- containing medium, atpdr12 plants grew less well and had higher Pb contents than those of wild- type plants. In contrast, AtPDR12- overexpressing Arabidopsis plants were more resistant to Pb( II) and had lower Pb contents than wild- type plants. The mutant phenotypes and their Pb contents, as well as the localization of the GFP: AtPDR12 fusion protein at the plasma membrane, suggest that AtPDR12 functions as a pump to exclude Pb( II) and/ or Pb( II)- containing toxic compounds from the cytoplasm. Inhibition of glutathione synthesis by addition of buthionine sulfoximine to the growth medium exacerbated the Pb( II)- sensitive phenotype of atpdr12 plants, consistent with a glutathione- dependent detoxification mechanism operating in parallel with an AtPDR12- dependent mechanism. Thus, we propose that AtPDR12 is an ABC transporter that contributes to Pb( II) resistance in Arabidopsis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据