4.5 Article

Angiotensin II attenuates synaptic GABA release and excites paraventricular-rostral ventrolateral medulla output neurons

期刊

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.104.082495

关键词

-

资金

  1. NHLBI NIH HHS [HL77400, HL60026] Funding Source: Medline

向作者/读者索取更多资源

The hypothalamic paraventricular nucleus (PVN) neurons regulate sympathetic outflow through projections to the spinal cord and rostral ventrolateral medulla (RVLM). Although the PVN-RVLM pathway is important for the action of brain angiotensin II (Ang II) on autonomic control, the cellular mechanisms involved are not fully known. In this study, we examined the effect of Ang II on the excitability and synaptic inputs to RVLM-projecting PVN neurons. PVN neurons were retrogradely labeled by FluoSpheres injected into the RVLM of rats. Whole-cell patch-clamp recordings were performed on labeled PVN neurons in brain slices. Ang II significantly increased the firing rate of PVN neurons from 3.63 +/- 0.65 to 6.10 +/- 0.75 Hz (P < 0.05, n = 9), and such an effect was eliminated by an AT(1) receptor antagonist, losartan. Furthermore, inclusion of a G protein inhibitor, guanosine 5'-O-(2-thiodiphosphate, in the pipette internal solution did not alter the excitatory effect of Ang II on labeled PVN neurons. Application of 0.5 to 5 mu M Ang II significantly decreased the amplitude of evoked GABAergic inhibitory postsynaptic currents (IPSCs) in a dose-dependent manner. Also, 2 mu M Ang II significantly decreased the frequency of miniature IPSCs (mIPSCs) from 3.89 +/- 0.84 to 2.06 +/- 0.45 Hz (P < 0.05, n = 11), but did not change the amplitude and decay time constant of mIPSCs. By contrast, Ang II had no significant effect on glutamatergic excitatory postsynaptic currents at the concentrations that inhibited IPSCs. In addition, Ang II failed to excite PVN neurons in the presence of bicuculline. Collectively, this study provides important new information that Ang II excites RVLM-projecting PVN neurons through attenuation of GABAergic synaptic inputs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据