4.5 Article

Effect of subsurface thermocouple installation on the discrepancy of the measured thermal history and predicted surface heat flux during a quench operation

向作者/读者索取更多资源

Water quenching plays an important role in metallurgical and materials manufacturing operations to control both the temperature of the product during processing and its final microstructure. In order to control a water-quench process, the surface heat-transfer coefficient or heat flux must be quantified accurately. A common procedure to do this is to use an inverse heat conduction (IHC) model to estimate the heat-transfer boundary condition (heat flux or heat-transfer coefficient) based on the measured thermal history during the quench operation at a known interior location in the sample. Traditionally, thermocouples (TCs) have been extensively used during quench tests to measure the sample temperature history. This article will examine the effect of the hole used to insert the thermocouple into the sample and its orientation with respect to the quenched surface, on the perturbation in the thermal field around the TC measurement point during water-quench operations characterized by boiling heat transfer. The effect of some other factors on the perturbation of the thermal field at the TC measurement point during water-quench operations such as the diameter of the thermocouple hole, thermocouple distance from the quench surface, sample thermal conductivity, and quench intensity were also investigated. A two-dimensional (2-D) axisymmetric IHC model developed at the University of British Columbia is used to estimate the error in the predicted heat fluxes based on the thermal history measured at the thermocouple measurement point. The study showed, for some quench conditions, that the thermocouple hole must be included in the IHC analysis as an independent body with its own thermophysical and geometrical characteristics. Validation of these model-predicted results was done using water-quench experiments performed on samples of steel and aluminum plates at the University of British Columbia. Using the Biot number (Bi), a simple criterion is developed to determine when the TC hole needs to be included in the heat-transfer analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据