4.7 Article

Taxon sampling effects in molecular clock dating: An example from the African Restionaceae

期刊

MOLECULAR PHYLOGENETICS AND EVOLUTION
卷 35, 期 3, 页码 569-582

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ympev.2004.12.006

关键词

molecular dating; NPRS; penalized likelihood; Bayesian dating; sampling effects; Restionaceae; lineage through time plots

向作者/读者索取更多资源

Three commonly used molecular dating methods for correction of variable rates (non-parametric rate smoothing, penalized likelihood, and Bayesian rate correction) as well as the assumption of a global molecular clock were tested for sensitivity to taxon sampling. The test dataset of 6854 basepairs for 300 terminals includes a nearly complete sample of the Restio-clade of the African Restionaceae (272 of the 288 species), as well as 26 outgroup species. Of this, nested subsets of 35, 51, 80, 120, 150, and the full 300 species were used. Molecular dating experiments with these datasets showed that all methods are sensitive to undersampling, but that this effect is more severe in analyses that use more extreme rate smoothing. Additionally, the undersampling effect is positively related to distance from the calibration node. The combined effect of undersampling and distance from the calibration node resulted in up to threefold differences in the age estimation of nodes from the same dataset with the same calibration point. We suggest that the most suitable methods are penalized likelihood and Bayesian when a global clock assumption has been rejected, as these methods are more successful at finding optimal levels of smoothing to correct for rate heterogeneity, and are less sensitive to undersampling. (c) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据