4.5 Article

Inducing reversible stiffness changes in DNA-crosslinked gels

期刊

JOURNAL OF MATERIALS RESEARCH
卷 20, 期 6, 页码 1456-1464

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1557/JMR.2005.0186

关键词

-

向作者/读者索取更多资源

Researchers have constructed a number of DNA-based nanodevices that undergo stepped configuration changes through the application of single-stranded DNA oligomers. Such devices can be incorporated into gel networks to create new classes of active materials with controllable bulk mechanical properties. This concept was demonstrated in a DNA-crosslinked gel, the stiffness of which was modulated through the application of DNA strands. Each crosslink incorporated a single-stranded region to which a DNA strand with a complementary base sequence (called the fuel strand) bound, thereby changing the nanostructure of the gel network. The gel was restored to its initial stiffness through the application of the complement of the fuel strand, which cleared the fuel strand from the crosslink via competitive binding. Stiffness changes in excess of a factor of three were observed. The ability to switch the mechanical properties of these gels without changing temperature, buffer composition, or other environmental conditions, apart from the application of DNA, makes these materials attractive candidates for biotechnology applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据