4.7 Article

Highly effective adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmorillonite nanocomposite

期刊

APPLIED CLAY SCIENCE
卷 166, 期 -, 页码 102-112

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.clay.2018.09.012

关键词

Crystal violet; Dye adsorption; Nanocomposite; Montmorillonite; Graphene oxide; Adsorption kinetics

资金

  1. Department of Science & Technology, Government of India [DST/KIRAN/SoRF-PM/016/2015]

向作者/读者索取更多资源

Herein, graphene oxide intercalated montmorillonite nanocomposites were prepared by a facile chemical route and then used for the adsorption of crystal violet dye from contaminated water. Structural characterization of the nanocomposites were performed using Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy, scanning electron microscopy, zeta potential, X-ray diffraction, specific surface area and pore volume measurements. The isothermal data obtained using batch adsorption technique were fitted using Langmuir and Freundlich equations and it was found that the experimental data is well described by the Langmuir isotherm model with a very high adsorption capacity of 746.27 mg g(-1) . The kinetics of the adsorption process showed rapid dynamics and conformed to pseudo-second-order model with a correlation coefficient of R-2 > 0.99. The influence of interaction time and initial dye concentration on the adsorption efficiency were also investigated. Additionally, thermodynamic studies revealed that the adsorption process was spontaneous and endothermic. Further, the results indicated that the synthesised nanocomposites adsorb crystal violet dye efficiently (-96%) with a small decrease in removal efficiency even after five cycles of adsorption and could be employed in wastewater treatment for the removal of cationic dyes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据