4.7 Article

Strength asymmetry in nanocrystalline metals under multiaxial loading

期刊

ACTA MATERIALIA
卷 53, 期 11, 页码 3193-3205

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2005.03.023

关键词

nanocrystalline metals; plasticity; simulation; tension-compression asymmetry; metallic glass

向作者/读者索取更多资源

Molecular simulations of nanocrystalline nickel are used to investigate the effect of loading state on mechanical response. Simulations at grain sizes near the amorphous limit (2-4 nm) show a clear strength asymmetry, with specimens stronger under uniaxial compression than under uniaxial tension. A full biaxial yield surface is obtained for a grain size of 2 nm, and its shape reflects the asymmetry seen in the uniaxial simulations: the compressive lobe is proportionally larger than the tensile lobe. This biaxial yield surface cannot be well described using traditional yield criteria based on the maximum shear stress, but a good fit can be attained if a pressure or normal stress dependence is included. The simulations also show a monotonic trend towards larger strength asymmetry at larger grain sizes, suggesting the existence of a maximum asymmetry at finite grain sizes. This trend is validated by other mechanistic considerations in the ultrafine range of grain sizes, and discussed relative to the experimental literature. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据