4.4 Article

Interactions of productivity, predation risk, and fishing effort in the efficacy of marine protected areas for the central Pacific

期刊

出版社

CANADIAN SCIENCE PUBLISHING
DOI: 10.1139/F05-114

关键词

-

向作者/读者索取更多资源

Ecospace biomass-dynamics models for the central North Pacific predict strong space-time variation in abundances of various trophic groups in relation to nutrient-driven patterns in primary production and circulation-driven concentration of production in convergence areas. The model predicts simple patterns in ecosystem organization and abundances along productivity gradients. Predicted patterns are robust to alternative assumptions about how mobile organisms may alter dispersal behavior in relation to local fitness (per capita gain from net food intake minus predation mortality). Large marine protected areas (MPAs) would be needed to rebuild endangered populations and counter impacts of growing fishing effort. We expected that increases in dispersal rate in response to lower food availability and higher predation risk would reduce efficacy of MPAs as a management tool. Instead, simulations indicated that this negative effect may generally be eliminated or even reversed by positive effects of fitness-maximizing behaviors. Interannual variability in ocean circulation can further reduce the efficacy of MPAs; therefore, the dynamic nature of pelagic environments should also be considered in MPA design. Anomalies in ocean circulation may shift productive areas relative to MPA location, resulting in increased fishing mortality and (or) misinterpretation of catch statistics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据