4.6 Article

Presence and potential signaling their phospholipid precursors in function of N-acylethanolamines and the yeast Saccharomyces cerevisiae

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbalip.2005.03.004

关键词

N-acylethanolainine; N-acylphosphatidylethanolamine; yeast (Saccharomyces cerevisiae); mutant strains; oxidative stress

向作者/读者索取更多资源

N-Acylethanolamines (NAEs) and N-acylpilosphatidyletlanolamines (NAPEs) are trace constituents of vertebrate cells and tissues and much is known about their metabolism and possible function in animals. Here we report for the first time the identification and quantification of NAEs and NAPEs in several strains of the yeast Saccharomyces cerevisiae. Gas chromatography-mass spectrometry of appropriate derivatives revealed 16:0, 16:1, 18:0 and 18:1 N-acyl groups in both NAE and NAPE whose levels, in wild-type cells, were 50 to 90 and 85 to 750 pmol/mu mol lipid P, respectively (depending on the phase of growth). NAPE levels were reduced by 45 to 60% in a strain lacking three type B phospholipases, suggesting their involvement in NAPE synthesis by their known transacylation activity. A yeast strain lacking the YPL103c gene, which codes for a protein with 50.3% homology to human NAPE-specific phospholipase D, exhibited a 60% reduction in NAE, compared to wild-type controls. The exposure of various yeast strains to peroxidative stress, by incubation in media containing 0.6 mM H2O2, resulted in substantial increases in NAE. Because yeast cells lack polyunsaturated fatty acids, they offer a useful system for the study of NAE generation and its potential signaling and cytoprotective effects in the absence of polyunsaturated (endocannabinoid) congeners. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据