4.7 Article

An emergent universe from a loop

期刊

PHYSICAL REVIEW D
卷 71, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.71.123512

关键词

-

资金

  1. Science and Technology Facilities Council [PP/C50209X/1] Funding Source: researchfish
  2. STFC [PP/C50209X/1] Funding Source: UKRI

向作者/读者索取更多资源

Closed, singularity-free, inflationary cosmological models have recently been studied in the context of general relativity. Despite their appeal, these so called emergent models suffer from a number of limitations. These include the fact that they rely on an initial Einstein static state to describe the past-eternal phase of the universe. Given the instability of such a state within the context of general relativity, this amounts to a very severe fine tuning. Also in order to be able to study the dynamics of the universe within the context of general relativity, they set the initial conditions for the universe in the classical phase. Here we study the existence and stability of such models in the context of Loop Quantum Cosmology and show that both these limitations can be partially remedied, once semiclassical effects are taken into account. An important consequence of these effects is to give rise to a static solution (not present in GR), which dynamically is a center equilibrium point and located in the more natural semiclassical regime. This allows the construction of emergent models in which the universe oscillates indefinitely about such an initial static state. We construct an explicit emergent model of this type, in which a nonsingular past-eternal oscillating universe enters a phase where the symmetry of the oscillations is broken, leading to an emergent inflationary epoch, while satisfying all observational and semiclassical constraints. We also discuss emergent models in which the universe possesses both early- and late-time accelerating phases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据