4.7 Article

Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines

期刊

ARTIFICIAL INTELLIGENCE IN MEDICINE
卷 34, 期 2, 页码 141-150

出版社

ELSEVIER
DOI: 10.1016/j.artmed.2004.10.001

关键词

support vector machine; microcalcification cluster classification; mammography

向作者/读者索取更多资源

Objective : Detection and characterization of microcalcification clusters in mammograms is vital in daily clinical practice. The scope of this work is to present a novel computer-based automated method for the characterization of microcalcification clusters in digitized mammograms. Methods and material : The proposed method has been implemented in three stages: (a) the cluster detection stage to identify clusters of microcalcifications, (b) the feature extraction stage to compute the important features of each cluster and (c) the classification stage, which provides with the final characterization. In the classification stage, a rule-based system, an artificial neural network (ANN) and a support vector machine (SVM) have been implemented and evaluated using receiver operating characteristic (ROC) analysis. The proposed method was evaluated using the Nijmegen and Mammographic Image Analysis Society (MIAS) mammographic databases. The original feature set was enhanced by the addition of four rule-based features. Results and conclusions : In the case of Nijmegen dataset, the performance of the SVM was A(z) = 0.79 and 0.77 for the original and enhanced feature set, respectively, white for the MIAS dataset the corresponding characterization scores were A(z) = 0.81 and 0.80. Utilizing neural network classification methodology, the corresponding performance for the Nijmegen dataset was A(z) = 0.70 and 0.76 while for the MIAS dataset it was A(z) = 0.73 and 0.78. Although the obtained high classification performance can be successfully applied to microcalcification clusters characterization, further studies must be carried out for the clinical evaluation of the system using larger datasets. The use of additional features originating either from the image itself (such as cluster Location and orientation) or from the patient data may further improve the diagnostic value of the system. (c) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据