4.6 Article

Astrocyte activation and reactive gliosis

期刊

GLIA
卷 50, 期 4, 页码 427-434

出版社

WILEY
DOI: 10.1002/glia.20207

关键词

astrocytes; intermediate filaments; GFAP; vimentin; nestin; reactive gliosis (astrogliosis); astrocyte processes; CNS trauma; brain ischemia; CNS regeneration

向作者/读者索取更多资源

Astrocytes become activated (reactive) in response to many CNS pathologies, such as stroke, trauma, growth of a tumor, or neurodegenerative disease. The process of astrocyte activation remains rather enigmatic and results in so-called reactive gliosis, a reaction with specific structural and functional characteristics. In stroke or in CNS trauma, the lesion itself, the ischemic environment, disrupted blood-brain barrier, the inflammatory response, as well as in metabolic, excitotoxic, and in some cases oxidative crises-all affect the extent and quality of reactive gliosis. The fact that astrocytes function as a syncytium of interconnected cells both in health and in disease, rather than as individual cells, adds yet another dimension to this picture. This review focuses on several aspects of astrocyte activation and reactive gliosis and discusses its possible roles in the CNS trauma and ischemia. Particular emphasis is placed on the lessons learnt from mouse genetic models in which the absence of intermediate filament proteins in astrocytes leads to attenuation of reactive gliosis with distinct pathophysiological and clinical consequences. (c) 2005 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据