4.6 Article Proceedings Paper

An unbiased integrated microstrip circulator based on magnetic nanowired substrate

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMTT.2005.848818

关键词

circulator; ferromagnetic nanowires; integrated; microstrip; nonreciprocal

向作者/读者索取更多资源

A very compact planar fully integrated circulator operating at millimeter wavelength has been designed using a magnetic substrate combining a polymer membrane with an array of ferromagnetic nanowires. The original feature of this substrate, called magnetic nanowired substrate (MNWS), relies on the fact that the circulation effect is obtained without requiring any biasing dc magnetic field. This leads to a significant reduction of device dimensions since no magnetic field source is needed, and a realistic ability for integration with monolithic microwave integrated circuits. The circulator design is performed by an efficient analytical model including a self design of the impedance matching network. This model also allows a physical understanding of the circulation mechanism through the access to the electromagnetic field patterns inside the circulator substrate. Based on the excellent agreement between the theoretical and experimental results, the model is used to predict the improvement of circulator performances resulting from a reduction of dielectric and conductor losses. Insertion losses lower than 2 dB with an isolation higher than 45 dB are expected for MNWS circulators with a low-loss substrate and thick metallic layers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据