4.8 Article

Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 144, 期 -, 页码 468-477

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2013.07.047

关键词

Electron transfer; Photocatalytic reduction; Titanate nanotube; Electrochemical impedance spectroscopy; Density functional theory

资金

  1. National Nature Science Foundation of China [51178412, 51278456]
  2. Zhejiang Provincial Education Department Scientific Research Projects [Z201122663]

向作者/读者索取更多资源

To enhance nitrogen photofixation more effectively, Fe-doped TiO2 nanoparticles with highly exposed (1 0 1) facets were prepared successfully by two-step hydrothermal method. The quantum yield of nitrogen photofixation in the presence of ethanol as scavenger can be significantly enhanced to 18.27 x 10(-2) m(-2) which is 3.84 times higher than pristine TiO2. The electrochemical properties of the photocatalyst reveal that the improvement of photocatalytic activity can be attributed to the enhancement of charge carrier's concentration and photocurrent density by the optimal doping of Fe3+. The electron spin-resonance spectroscopy demonstrates the generation of active radicals such as (center dot)02(-) and (OH)-O-center dot in the nitrogen photofixation. The quantum yields of nitrogen photofixation depend on the partial pressure of nitrogen in the reaction. A systematic experimental investigation companying with periodic density functional theory calculation into the intermediates reveals the intrinsic electron transfer pathways and the mechanism of nitrogen photofixation. The entire reduction process of 1 mol N-2 to 2 mol NH3 with consumption of 6 mol electrons on TiO2 is similar to the traditional biological nitrogen fixation process. The proposed electron transfer mechanism may be useful to other applications, which use semiconductor materials as photocatalysts. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据