4.6 Article

Global solution of semi-infinite programs

期刊

MATHEMATICAL PROGRAMMING
卷 103, 期 2, 页码 283-307

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10107-005-0583-6

关键词

-

向作者/读者索取更多资源

Optimization problems involving a finite number of decision variables and an infinite number of constraints are referred to as semi-infinite programs (SIPs). Existing numerical methods for solving nonlinear SIPs make strong assumptions on the properties of the feasible set, e.g., convexity and/or regularity, or solve a discretized approximation which only guarantees a lower bound to the true solution value of the SIP. Here, a general, deterministic algorithm for solving semi-infinite programs to guaranteed global optimality is presented. A branch-and-bound (B&B) framework is used to generate convergent sequences of upper and lower bounds on the SIP solution value. The upper-bounding problem is generated by replacing the infinite number of real-valued constraints with a finite number of constrained inclusion bounds; the lower-bounding problem is formulated as a convex relaxation of a discretized approximation to the SIP. The SIP B&B algorithm is shown to converge finitely to epsilon-optimality when the subdivision and discretization procedures used to formulate the node subproblems are known to retain certain convergence characteristics. Other than the properties assumed by globally-convergent B&B methods (for finitely-constrained NLPs), this SIP algorithm makes only one additional assumption: For every minimizer x* of the SIP there exists a sequence of Slater points x(n) for which lim (n ->infinity) x(n) = x* and q(xn)(1) < q(xn)(2), for all n (cf. Section 5.4). Numerical results for test problems in the SIP literature are presented. The exclusion test and a modified upper-bounding problem are also investigated as heuristic approaches for alleviating the computational cost of solving a nonlinear SIP to guaranteed global optimality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据