4.8 Article

Electromagnetic, atomic structure and chemistry changes induced by Ca-doping of low-angle YBa2Cu3O7-δ grain boundaries

期刊

NATURE MATERIALS
卷 4, 期 6, 页码 470-475

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nmat1394

关键词

-

向作者/读者索取更多资源

Practical high-temperature superconductors must be textured to minimize the reduction of the critical current density J(gb) at misoriented grain boundaries. Partial substitution of Ca for Y in YBa2Cu3O7-delta has shown significant improvement in J(gb) but the mechanisms are still not well understood. Here we report atomic-scale, structural and analytical electron microscopy combined with transport measurements on 7 degrees [001]-tilt Y0.7Ca0.3Ba2Cu3O7-delta and YBa2Cu3O7-delta grain boundaries, where the dislocation cores are well separated. We show that the enhanced carrier density, higher J(gb) and weaker superconductivity depression at the Ca-doped boundary result from a strong, non-monotonic Ca segregation and structural rearrangements on a scale of similar to 1 nm near the dislocation cores. We propose a model of the formation of Ca2+ solute atmospheres in the strain and electric fields of the grain boundary and show that Ca doping expands the dislocation cores yet enhances J(gb) by improving the screening and local hole concentration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据