4.6 Article Proceedings Paper

Atomic mechanisms of grain boundary diffusion: Low versus high temperatures

期刊

JOURNAL OF MATERIALS SCIENCE
卷 40, 期 12, 页码 3155-3161

出版社

SPRINGER
DOI: 10.1007/s10853-005-2678-0

关键词

-

向作者/读者索取更多资源

We analyze recent results of atomistic computer simulations of grain boundary (GB) diffusion in metals. At temperatures well below the bulk melting point T-m GB diffusion occurs by random walk of individual vacancies and self-interstitials. Both defects are equal participants in the diffusion process and can move by a large variety of diffusion mechanisms, many of which are collective transitions. GB diffusion coefficients can be computed by kinetic Monte Carlo simulations. At high temperatures, the presence of large concentrations of point defects is likely to alter the diffusion mechanisms. Molecular dynamics simulations of GB structure and diffusion in copper reveal a continuous GB premelting in close vicinity of T-m. However, diffusion in high-energy GBs becomes almost independent of the GB structure (universal) at temperatures well below T-m. This behavior can be tentatively explained in terms of heterophase fluctuations from the solid to the liquid phase. The exact diffusion mechanisms in the presence of heterophase fluctuations are yet to be established. (c) 2005 Springer Science + Business Media, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据