4.7 Article

Variation in penetrometer resistance with soil properties: the contribution of effective stress and implications for pedotransfer functions

期刊

GEODERMA
卷 126, 期 3-4, 页码 261-276

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.geoderma.2004.08.006

关键词

soil mechanical resistance curve; soil texture; water potential; water content; soil strength; compaction

向作者/读者索取更多资源

Soil mechanical resistance to penetration by roots can potentially contribute to the spatial and temporal variability in root and shoot growth. Functions that accurately relate penetrometer resistance to soil properties are important tools for assessing the contribution of soil mechanical resistance (SMR) when the temporal and spatial variability in SMR cannot be readily measured. Although effective stress can make a significant contribution to SMR, the role of texture and compaction on the contribution of effective stress to SMR has not been explored and functions that are currently used to describe the relation between SMR, water content/potential and other soil properties do not contain terms explicitly linked to effective stress. The objectives of this study were to assess functions that included terms that would be compatible with effective stress and to subsequently develop a pedotransfer function to quantify the dependence of SMR on soil properties. Soil resistance was measured on disturbed and undisturbed soils with a range of textures, organic carbon (OC) contents and bulk density after equilibrating the soils at different water potentials (psi). The SMR decreased with decreasing psi at the lowest psi in coarser-textured soils and the effects persisted into medium-textured soils at the higher level of compaction. These effects were attributed to a decrease in effective stress. The function found to be most successful in describing SMR in both disturbed and undisturbed soils was of the form: SMR = a*(psi(b)) - c*psi where a, b and c were functions of texture, OC content and bulk density. The dependence on soil properties was different in the disturbed and undisturbed soils. Sensitivity analyses indicated that the variation in the second term with soil properties was compatible with expectations regarding increasing discontinuity in water films or the development of microcracks with decreasing psi. The study suggested that pedotransfer functions for SMR should be adjusted to account for the possible reduction in SMR at low water contents or psi due to decreasing values of effective stress. (c) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据