4.8 Article

Efficiency and reactivity pattern of ceria-based noble metal and transition metal-oxide catalysts in the wet air oxidation of phenol

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 115, 期 -, 页码 336-345

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcatb.2011.12.035

关键词

Catalytic wet air oxidation (CWAO); Phenol; Transition-metal oxide catalysts; Noble-metal catalysts; Activity; Selectivity; Stability; Reaction mechanism; Kinetics

向作者/读者索取更多资源

The activity-stability pattern of ceria-based noble metal (Pt/CeO2) and transition metal-oxide (MnCeOx) catalysts in the wet air oxidation of phenol (CWAO) at different catalyst-to-phenol weight ratio (R, 1-5) was comparatively probed using a stirred batch reactor with continuous oxygen feed (T-R, 150 degrees C; Po-2. 0.9 MPa). Both Pt/CeO2 and MnCeOx systems drive a surface dual-site Langmuir-Hinshelwood (L-H) reaction path enabling higher efficiency, different reaction kinetics and phenol-total organic carbon conversion relationships in comparison to homogeneous CWAO catalysts [1]. A simplified reaction scheme based on consecutive adsorption and mineralization steps and the relative kinetic analysis show that the former determines the rate of phenol and TOC removal, while the latter controls the selectivity and rate of catalyst fouling. The MnCeOx system ensures a fast and complete phenol conversion and a TOC removal higher than 80% at any R, while improved adsorption and mineralization functionalities explain a higher resistance to deactivation by fouling than Pt/CeO2 system. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据