4.8 Article

Microwave-assisted non-aqueous route to deposit well-dispersed ZnO nanocrystals on reduced graphene oxide sheets with improved photoactivity for the decolorization of dyes under visible light

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 125, 期 -, 页码 425-431

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2012.06.016

关键词

Reduced graphene oxide; ZnO nanocrystals; Nanohybrids; Microwave-assisted method; Photoactivity

资金

  1. Natural Science Foundation of China [21171146]
  2. Zhejiang Provincial Natural Science Foundation of China [Y4110304]
  3. Zhejiang Qianjiang Talent Project [2010R10025]

向作者/读者索取更多资源

A new strategy is discussed for deposition of monodisperse ZnO nanocrystals on the surface of reduced graphene oxide (rGO) sheets to form rGO/ZnO nanohybrids via a microwave-assisted route in a non-aqueous media. This is a facile and rapid process, which only requires a proration of zinc salt and rGO sheets react in diethylene glycol (DEG) under a low level of microwave irradiation (300W) for 10 min. The as-prepared nanohybrids demonstrate well-dispersed ZnO nanocrystals loading and powerful photocatalytic activity for the decolorization of self-photosensitized dyes (rhodamine-B and methylene blue) under visible-light illumination. Here, DEG does not only help to enhance dispersion of rGO sheets, but also play an important role of controlling the growth of ZnO. Furthermore, the average size and loading amount of ZnO nanocrystals can be conveniently varied or controlled by the concentration of zinc precursor. The result uncovers that the loading of ZnO nanocrystals in the as-prepared nanohybrids is crucial to obtain an optimal synergistic effect between ZnO and rGO sheets in the mediated photocatalysis process for the photosensitized dyes decolorization. Accordingly, the optimum matching for the best photocatalytic activity is investigated thoroughly and a reasonable mechanism is also proposed. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据