4.5 Article

CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli

期刊

MOLECULAR MICROBIOLOGY
卷 56, 期 6, 页码 1648-1663

出版社

WILEY
DOI: 10.1111/j.1365-2958.2005.04648.x

关键词

-

资金

  1. NIGMS NIH HHS [GM 59969, GM 066794, R01 GM059969] Funding Source: Medline

向作者/读者索取更多资源

The RNA-binding protein CsrA represses biofilm formation, while the non-coding RNAs CsrB and CsrC activate this process by sequestering CsrA. We now provide evidence that the pgaABCD transcript, required for the synthesis of the polysaccharide adhesin PGA (poly-beta-1,6-N-acetyl-D-glucosamine) of Escherichia coli, is the key target of biofilm regulation by CsrA. csrA disruption causes an approximately threefold increase in PGA production and an approximately sevenfold increase in expression of a pgaA'-'lacZ translational fusion. A Delta csrB Delta csrC mutant exhibits a modest decrease in pgaA'-'lacZ expression, while the response regulator UvrY, a transcriptional activator of csrB and csrC, stimulates this expression. Biofilm formation is not regulated by csrA, csrB or uvrY in a Delta pgaC mutant, which cannot synthesize PGA. Gel mobility shift and toeprint analyses demonstrate that CsrA binds cooperatively to pgaA mRNA and competes with 30S ribosome subunit for binding. CsrA destabilizes the pgaA transcript in vivo. RNA footprinting and boundary analyses identify six apparent CsrA binding sites in the pgaA mRNA leader, the most extensive arrangement of such sites in any mRNA examined to date. Substitution mutations in CsrA binding sites overlapping the Shine - Dalgarno sequence and initiation codon partially relieve repression by CsrA. These studies define the crucial mechanisms, though not the only means, by which the Csr system influences biofilm formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据