4.8 Article

The influence of the local structure of Fe(III) on the photocatalytic activity of doped TiO2 photocatalysts-An EXAFS, XPS and Mossbauer spectroscopic study

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 103, 期 1-2, 页码 232-239

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcatb.2011.01.033

关键词

TiO2; Fe(III) doping; EXAFS; XPS; Mossbauer; Local structure; Photocatalysis

资金

  1. Hungarian Science Foundation (OTKA) [K62691, K68135, K67835, PD78378]
  2. MaxLab [I811-072]
  3. Hungarian Academy of Sciences

向作者/读者索取更多资源

Fe(III)-doped TiO2 based heterogeneous photocatalysts were prepared by the sol-gel technique (S samples) or flame hydrolysis (F samples). In photocatalytic phenol decomposition, the undoped F-sample performed much better, than the undoped S one. However, for the S samples, photocatalytic activity first increased with the increasing Fe(III) concentration, and then passed through a maximum, while Fe(III)-doping in F samples significantly decreased it, even at the smallest dopant level. Since the same dopant caused opposite photocatalytic effects in the two series, their structure was systematically compared to identify the underlying chemical and/or physical reasons. The photocatalysts were first characterized by AAS, DRS, XRD and TEM methods and it has been shown that the differences in the photocatalytic activity cannot be explained by the minor variations in the bulk structural properties of TiO2. Mossbauer and XP spectroscopic measurements performed on representative samples qualitatively proved that the local structure of Fe(III) is different in the two series. To quantify these effects, Fe-K edge X-ray absorption measurements were performed. From the pre-edge and XANES region it was learnt that Fe(III) was present in a distorted octahedral environment in both series, however, the extent of distortion is much more significant within the S than within the F one. Information obtained from the EXAFS region indicated that the structure of Fe2O3 was much more ordered in the F-series then in the S one and vacancies were more abundant in the S than in the F series. Moreover, the geometry around Fe(III) systematically varied within the S-series, which could explain, why photocatalytic activity passed through a maximum with the increasing Fe(III) concentration in these samples. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据