4.8 Article

A photophysical approach to investigate the photooxidation mechanism of pesticides: Hydroxyl radical versus electron transfer

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 103, 期 1-2, 页码 48-53

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2011.01.007

关键词

Hydroxyl radical; Laser flash photolysis; Photo-Fenton; Titanium dioxide; Triphenylpyrylium

资金

  1. Spanish Government [CTQ2009-13699, CTQ2009-13459-C05-03]

向作者/读者索取更多资源

The role of hydroxyl radical in different solar photocatalytic processes, namely photo-Fenton, titanium dioxide-based oxidation and organic photocatalysis (triphenylpyrylium) has been investigated. Using a methodology based on the flash photolytic generation of OH center dot from N-hydroxypyridine-2(1H)-thione, followed by t-stilbene trapping, the reaction rate constants of different pesticides (dimethoate, methidathion, alachlor and pyrimethanyl) with this reactive oxygen species in deaerated acetonitrile have been determined. The results obtained under photo-Fenton conditions are in reasonable agreement with the estimated rate constants; hence the assumption that the photo-Fenton reaction mainly involves participation of the hydroxyl radical seems plausible. The oxidation pattern using titanium dioxide was also investigated; however, under these conditions no clear correlation could be found due to participation of an alternative electron transfer mechanism. Finally, pyrimethanil was the most reactive pesticide when photodegradation was carried out in the presence of TPP, in spite of its low reactivity towards hydroxyl radical. Laser flash photolysis experiments evidenced that the reaction occurs via photoinduced electron transfer within a ground state complex: this is in good correlation with the relative amount of pyranyl radical formation. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据