4.8 Article

Coherent single charge transport in molecular-scale silicon nanowires

向作者/读者索取更多资源

We report low-temperature electrical transport studies of chemically synthesized, molecular-scale silicon nanowires. Individual nanowires exhibit Coulomb blockade oscillations characteristic of charge addition to a single nanostructure on length scales up to at least 400 nm. Studies also demonstrate coherent charge transport through discrete single particle quantum levels extending across whole devices, and show that the ground-state spin configuration is consistent with the constant interaction model, In addition, depletion of nanowires suggests that phase coherent single-dot characteristics are accessible in the few-charge regime. These results differ from those for nanofabricated planar silicon devices, which show localization on much shorter length scales, and thus suggest potential for molecular-scale silicon nanowires as building blocks for quantum and conventional electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据