4.5 Article

Dynamic effectiveness factor for catalyst particles

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 109, 期 21, 页码 11058-11064

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp0580266

关键词

-

向作者/读者索取更多资源

The effectiveness factor (EF) is a nondynamic concept that has been demonstrated to be useful for the analysis and design of reaction-diffusion systems (e.g., catalyst particles). The aim of this paper is to introduce a dynamic EF factor (DEF) concept that extends the existing nondynamic one. In the first step, the standard EF is interpreted as a scaling factor that transforms total reaction rates from surface/bulk to catalyst particle conditions. Through the use of Fourier transform (i.e., frequency domain) to deal with time variations, the above interpretation is extended to dynamic conditions by defining the DEF as a linear operator transforming total reaction rate signals from surface/bulk to catalyst particle conditions. It is shown that the classical nondynamic EF concept is recovered in the steady-state limit of the DEF definition. Interestingly, the DEF can be easily computed from the nondynamic EF expressions by introducing a complex Thiele modulus. Results show that for reaction-diffusion processes where the diffusion mechanism is governed by Fick's law the magnitude of the DEF decreases with the frequency. This means that the best reaction rate performance is obtained when the process operates at steady-state (i.e., nondynamic) conditions. However, when a diffusion model with relaxation time is assumed to hold, resonant peaks at nontrivial frequencies can be displayed. Physically, this behavior implies that dynamic (e.g., periodic) operation of the reaction-diffusion process can yield better performance when compared with its nondynamic counterpart.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据