4.8 Article

Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 86, 期 3-4, 页码 159-165

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcatb.2008.08.003

关键词

Photocatalysis; VOC; Toluene; Indoor air; Reaction products

向作者/读者索取更多资源

We report here a new analytical methodology for the investigation of toluene photocatalytic removal at indoor-relevant concentration level (ppbv). Experiments were performed using an annular flow-through reactor with TiO2 as photocatalyst, toluene as a model VOC and under different ranges of relative humidity (RH: 0-70%), inlet concentration (20-400 ppbv) and flow rate (70-350 mL min(-1)). Analysis of reaction intermediates was conducted using an automated thermal desorption technique coupled to GC-MS instrument (ATD-GC-MS) whereas a GC coupled to pulsed discharge helium ionization detector (GC-PDPID) was used for the first time for on-line measurements of CO and CO2 at ppbv level. Under these conditions, toluene conversion was up to 90-100% with a slight influence of inlet concentration and RH, whereas flow rate was found to be a prevalent factor. Mineralization (%) varied from 55 to 95% and has shown to be strongly inhibited by the increase of RH whereas flow rate and inlet concentration exhibited a negligible effect. The reaction intermediates were found to be different according to the RH level: in absence of water vapor, traces of low molecular weight carbonyls (formaldehyde, methyl glyoxal, etc.) were detected and quantified in the gas phase whereas at RH 40%, hydroxylated intermediates such as cresols and benzyl alcohol were observed. On the basis of identification results, a reaction mechanism was proposed involving mainly direct hole oxidation at dry conditions and hydroxylation by OH radicals at high RH level. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据