4.7 Article

Differential response of Period 1 expression within the suprachiasmatic nucleus

期刊

JOURNAL OF NEUROSCIENCE
卷 25, 期 23, 页码 5481-5487

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0889-05.2005

关键词

circadian; desynchronization; entrainment; light; suprachiasmatic; synchrony

资金

  1. NIMH NIH HHS [R01 MH062517, MH62517] Funding Source: Medline

向作者/读者索取更多资源

The suprachiasmatic nuclei (SCNs) of the hypothalamus contain a circadian clock that exerts profound control over rhythmic physiology and behavior. The clock consists of multiple autonomous cellular pacemakers distributed throughout the rat SCN. In response to a shift in the light schedule, the SCN rapidly changes phase to achieve the appropriate phase relationship with the shifted light schedule. Through use of a transgenic rat in which rhythmicity in transcription of the Period 1 gene was measured with a luciferase reporter (Per1-luc), we have been successful in tracking the time course of molecular rhythm phase readjustments in different regions of the SCN that occur in response to a shift in the light schedule. We find that different regions of the SCN phase adjust at different rates, leading to transient internal desynchrony in Per1-luc expression among SCN regions. This desynchrony among regions is most pronounced and prolonged when the light schedule is advanced compared with light schedule delays. A similar asymmetry in the speed of phase resetting is observed with locomotor behavior, suggesting that phase shifting kinetics within the SCN may underlay the differences observed in behavioral resetting to advances or delays in the light schedule.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据