4.7 Article

An RNA interference model of RPS 19 deficiency in Diamond-Blackfan anemia recapitulates defective hematopoiesis and rescue by dexamethasone: identification of dexamethasone-responsive genes by microarray

期刊

BLOOD
卷 105, 期 12, 页码 4620-4626

出版社

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2004-08-3313

关键词

-

资金

  1. NCI NIH HHS [T32 CA009172] Funding Source: Medline

向作者/读者索取更多资源

Diamond-Blackfan anemia (DBA), a congenital erythroblastopenia, is a model disease for the study of erythroid differentiation but is poorly understood. RPS19 is the only gene yet to have been associated with DBA, but its relevance to erythroid differentiation is unclear. The molecular basis for the stimulation of erythropoiesis by glucocorticoids in patients with DBA has not been identified. We demonstrate that targeted degradation of the RPS19 transcript, through retroviral expression of short hairpin RNAs (shRNAs), blocks the proliferation and differentiation of erythroid progenitor cells in cultured human CD34(+) cells. Treatment of RPS19-deficient cells with dexamethasone restores erythroid differentiation to normal levels. We investigated the molecular basis of pharmacologic therapies for DBA using oligonucleotide microarrays to survey gene expression in CD34(+) cells treated with combinations of dexamethasone, erythropoietin, stem cell factor, and interleukin-3. Dexamethasone did not alter expression of RPS19 but activated a genetic program that includes a set of key hematopoietic regulatory genes. Genes specific to erythroid progenitor cells were up-regulated by dexamethasone, while genes specific to nonerythroid lineages were down-regulated. Deficiency of RPS19 therefore blocks proliferation of immature erythroid progenitor cells, and dexamethasone activates proliferation of the same cell population through mechanisms independent of RPS19. (c) 2005 by The American Society of Hematology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据