4.7 Article

Packing density and structure effects on energy-transfer dynamics in argon collisions with organic monolayers

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 122, 期 23, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1924693

关键词

-

向作者/读者索取更多资源

A combined experimental and molecular-dynamics simulation study has been used to investigate energy-transfer dynamics of argon atoms when they collide with n-alkanethiols adsorbed to gold and silver substrates. These surfaces provide the opportunity to explore how surface structure and packing density of alkane chains affect energy transfer in gas-surface collisions while maintaining the chemical nature of the surface. The chains pack standing up with 12 degrees and 30 degrees tilt angles relative to the surface normal and number densities of 18.9 and 21.5 angstrom(2)/molecule on the silver and gold substrates, respectively. For 7-kJ/mol argon scattering, the two surfaces behave equivalently, fully thermalizing all impinging argon atoms. In contrast, these self-assembled monolayers (SAMs) are not equally efficient at absorbing the excess translational energy from high-energy, 35 and 80 kJ/mol, argon collisions. When high-energy argon atoms are scattered from a SAM on silver, the fraction of atoms that reach thermal equilibrium with the surface and the average energy transferred to the surface are lower than for analogous SAMs on gold. In the case of argon atoms with 80 kJ/mol of translational energy scattering from long-chain SAMs, 60% and 45% of the atoms detected have reached thermal equilibrium with the monolayers on gold and silver surfaces, respectively. The differences in the scattering characteristics are attributed to excitation efficiencies of different types of surface modes. The high packing density of alkyl chains on silver restricts certain low-energy degrees of freedom from absorbing energy as efficiently as the lower-density monolayers. In addition, molecular-dynamics simulations reveal that the extent to which argon penetrates into the monolayer is related to packing density. For argon atoms with 80-kJ/mol incident energy, we find 16% and 7% of the atoms penetrate below the terminal methyl groups of C-10 SAMs on gold and silver, respectively. (C) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据