4.7 Article

Hybrid correlation models based on active-space partitioning: Correcting second-order Moller-Plesset perturbation theory for bond-breaking reactions

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 122, 期 23, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1935508

关键词

-

向作者/读者索取更多资源

Moller-Plesset second-order (MP2) perturbation theory breaks down at molecular geometries which are far away from equilibrium. We decompose the MP2 energy into contributions from different orbital subspaces and show that the divergent behavior of the MP2 energy comes from the excitations located within a small (or sometimes even the minimal) active space. The divergent behavior of the MP2 energy at large interfragment distances may be corrected by replacing a small number of terms by their more robust counterparts from coupled-cluster (CCSD) theory. We investigated several schemes of such a substitution, and we find that a coupling between the active-space CCSD and the remaining MP2 amplitudes is necessary to obtain the best results. This naturally leads us to an approach which has previously been examined in the context of cost-saving approximations to CCSD for equilibrium properties by Nooijen [J. Chem. Phys. 111, 10815 (1999)]. The hybrid MP2-CCSD approach, which has the same formal scaling as conventional MP2 theory, provides potential curves with a correct shape for bond-breaking reactions of BH, CH4, and HF. The error of the MP2-CCSD method (measured against full configuration-interaction data) is smaller than that of MP2 at all interfragment separations and is qualitatively similar to that of full CCSD. (C) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据