4.4 Article

Structure and function of snake venom toxins interacting with human von Willebrand factor

期刊

TOXICON
卷 45, 期 8, 页码 1075-1087

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.toxicon.2005.02.023

关键词

botrocetin; bitiscetin; von Willebrand factor; kaouthiagin; ADAMTS-13; platelet plug; GPIb

向作者/读者索取更多资源

Hemostatic plug formation is a complex event mediated by platelets, subendothelial matrices and von Willebrand factor (VWF) at the vascular injury. Snake venom proteins have an excellent potency to regulate the interaction between VWF and platelet membrane receptors in vitro. Two protein families, C-type lectin-like proteins and Zn2+-metalloproteinases, have been found to affect platelet-VWF interaction. Botrocetin and bitiscetin from viper venom are disulfide-linked heterodimers with C-type lectin-like motif, and modulate VWF to elicit platelet glycoprotein Ib (GPIb)-binding activity via the A1 domain of VWF leading to the platelet agglutination. The crystal structures of botrocetin and bitiscetin together with complex from the VWF A1 domain indicate the following: (1) a central concave domain formed by two subunits of botrocetin or bitiscetin provides the binding site for VWF, (2) these modulators directly bind to the A I domain of VWF in close proximity to the GPIb binding site, (3) both modulators induce no significant conformational change on the GPIb-binding site of the A1 domain but could provide a supplemental platform fitting for GPIb. These results suggest that the modulating mechanisms of these venoms are different from those performed by either antibiotic ristocetin in vitro or extremely high shear stress in vivo. Other modulator toxins include kaouthiagin and jararhagin, chimeric proteins composed of metalloproteinase, disintegrin-like and Cys-rich domains. These toxins cleave VWF and reduce its platelet agglutinating or collagen-binding activity. Kaouthiagin from cobra venom specifically cleaves between Pro708 and Asp709 in the C-terminal VWF A1 domain resulting in the decrease of the multimer structure of VWF. Recently a plasma proteinase, which specifically cleaves VWF into a smaller multimer, has been elucidated to be a reprolysin-like metalloproteinase with thrombospondin motif family (ADAMTS). This endogenous metalloproteinase (ADAMTS-13) specifically cleaves between Tyr842 and Met843 in the A2 domain of VWF regulating its physiological hemostatic These VWF-binding snake venom proteins are suitable probes for basic research on platelet plug formation mediated by VWF, for subsidiary diagnostic use for von Willebrand disease or platelet disorder, and might be potently applicable to the regulation of VWF in thrombosis and hemostasis. Structural information of these venom proteins together with recombinant technology might strongly promote the construction of a new antihemostatic drug in the near future. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据