4.6 Article

Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes

期刊

BMC BIOINFORMATICS
卷 6, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2105-6-148

关键词

-

向作者/读者索取更多资源

Background: In the clinical context, samples assayed by microarray are often classified by cell line or tumour type and it is of interest to discover a set of genes that can be used as class predictors. The leukemia dataset of Golub et al. [ 1] and the NCI60 dataset of Ross et al. [ 2] present multiclass classification problems where three tumour types and nine cell lines respectively must be identified. We apply an evolutionary algorithm to identify the near-optimal set of predictive genes that classify the data. We also examine the initial gene selection step whereby the most informative genes are selected from the genes assayed. Results: In the absence of feature selection, classification accuracy on the training data is typically good, but not replicated on the testing data. Gene selection using the RankGene software [ 3] is shown to significantly improve performance on the testing data. Further, we show that the choice of feature selection criteria can have a significant effect on accuracy. The evolutionary algorithm is shown to perform stably across the space of possible parameter settings - indicating the robustness of the approach. We assess performance using a low variance estimation technique, and present an analysis of the genes most often selected as predictors. Conclusion: The computational methods we have developed perform robustly and accurately, and yield results in accord with clinical knowledge: A Z-score analysis of the genes most frequently selected identifies genes known to discriminate AML and Pre-T ALL leukemia. This study also confirms that significantly different sets of genes are found to be most discriminatory as the sample classes are refined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据