4.8 Review

Nanoparticle labels in immunosensing using optical detection methods

期刊

BIOSENSORS & BIOELECTRONICS
卷 20, 期 12, 页码 2454-2469

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2004.11.003

关键词

nanoparticles; immunoassay; luminescence; nanophotonics; quantum dots; ImmunoSuperNova((R))

向作者/读者索取更多资源

Efforts to improve the performance of immunoassays and immunosensors by incorporating different kinds of nanostructures have gained considerable momentum over the last decade. Apart from liposomes, which will not be discussed here, most groups focus on artificial, particulate marker systems, both organic and inorganic. The underlying detection procedures may be based either on electro-magnetical or optical techniques. This review will be confined to the latter only, comprising nanoparticle applications generating signals as diverse as static and time-resolved luminescence, one- and two-photon absorption, Raman and Rayleigh scattering as well as surface plasmon resonance and others. In general, all endeavors cited are geared to achieve one or more of the following goals: lowering of detection limits (if possible, down to single-molecule level), parallel integration of multiple signals (multiplexing), signal amplification by several orders of magnitude and prevention of photobleaching effects with concomitant maintenance of antigen binding specificity and sensitivity. Inorganic nanoparticle labels based on noble metals, semiconductor quantum dots and nanoshells appear to be the most versatile systems for these bioanalytical applications of nanophotonics. (c) 2004 Elsevier B. V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据