4.6 Article

A model of thalamocortical relay cells

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 565, 期 3, 页码 765-781

出版社

WILEY
DOI: 10.1113/jphysiol.2004.070888

关键词

-

向作者/读者索取更多资源

It is well established that the main intrinsic electrophysiological properties of thalamocortical relay cells, production of a low threshold burst upon release from hyperpolarized potential and production of a train of single spikes following stimulation from depolarized potentials, can be readily modelled using a single compartment. There is, however, another less wen explored intrinsic electrophysiological characteristic of relay cells for which models have not yet accounted: at somatic potentials near spike threshold, relay cells produce a fast ragged high threshold oscillation in somatic voltage. Optical [Ca2+] imaging and pharmacological tests indicate that this oscillation correlates with a high threshold Ca2+ current in the dendrites. Here we present the development of a new compartment model of the thalamic relay cell guided by the simultaneous constraints that it must produce the familiar regular spiking relay mode and low threshold rebound bursts which characterize these cells, as well as the less-studied fast oscillation occurring at near-threshold somatic potentials. We arrive at a model cell which is capable of the production of isolated high threshold Ca2+ spikes in distal branch segments, driven by a rapidly inactivating intermediate threshold Ca2+ channel. Further, the model produces the low threshold spike behaviour of the relay cell without requiring high T-current density in the distal dendritic segments. The results thus support a new picture of the dendritic tree of relay cells which may have implications for the manner in which thalamic relay cells integrate descending input from the cortex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据