4.7 Article

Importance of vibronic effects on the circular dichroism spectrum of dimethyloxirane

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 122, 期 23, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1927519

关键词

-

向作者/读者索取更多资源

We present a theoretical study on the vibrational structure of a circular dichroism (CD) spectrum using time-dependent density-functional theory in combination with a Franck-Condon-type approach. This method is applied to analyze the complex CD spectrum of dimethyloxirane, which involves delicate cancellations of positive and negative CD bands. Our approach reveals that these cancellations are strongly affected by the shapes of the CD bands, and that it is vital for an accurate simulation of the spectrum to take the different envelopes of these bands into account. One crucial point in some former theoretical studies on this compound, which were restricted to vertical excitations, was the appearance of a strong negative CD band in the energy range of 7.0-7.5 eV, which is not present in the experimental spectrum. We can explain the disappearance of this 2B band by a strong vibrational progression along normal modes with C-O stretching character, so that the band extends over an energy range of almost 1.1 eV. Thus, it overlaps with many other (mostly positive) CD bands, leading to a cancellation of its intensity. The dominant vibrational features in the experimental spectrum can be assigned to the 1B, 3B, and 5B bands, which show several clear vibrational peaks and a total bandwidth of only 0.3-0.5 eV. In order to obtain close agreement between the simulated and the experimental spectrum we have to apply small shifts to the vertical excitation energies that enter the calculation. These shifts account both for possible errors in the time-dependent density-functional theory calculations and for the neglect of differential zero-point energy between ground and excited states in our gradient-based vertical Franck-Condon approach. (C) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据