4.8 Article

Sensitization of glioma cells to fas-dependent apoptosis by chemotherapy-induced oxidative stress

期刊

CANCER RESEARCH
卷 65, 期 12, 页码 5248-5255

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-04-4332

关键词

-

类别

资金

  1. NINDS NIH HHS [NS 95704] Funding Source: Medline

向作者/读者索取更多资源

A prominent feature of glioblastoma is its resistance to death from Fas pathway activation. In this study, we explored the modulation of Fas-induced glioblastoma death with chemotherapeutic agents. Camptothecin significantly increased the glioblastoma cell death response to Fas receptor activation regardless of p53 status. Sublethal concentrations of camptothecin reduced the IC50 of agonistic anti-Fas antibody (CH-11) 10-fold, from 500 to 50 ng/mL, in human U87 glioblastoma cells (p53 wild-type). Cell viability in response to camptothecin, CH-11 alone, and the combination of camptothecin + CH-11 was found to be 84%, 85%, and 47% (P < 0.001), respectively. A similar pattern of relative cytotoxicity was found in U373 cells (p53 mutant). We further examined the pathways and mechanisms involved in this apparent synergistic cytotoxic response. Cell death was found to be predominantly apoptotic involving both extrinsic and intrinsic pathways as evidenced by annexin V staining, cleavage of caspases (3, 8, and 9), increased caspase activities, Smac release, and cytoprotection by caspase inhibitors. Expression of Fas-associated death domain, and not Fas, Fas ligand, or caspase proteins, increased following cell treatment with camptothecin + CH-11. Camptothecin treatment enhanced c-jun-NH2-kinase activation in response to CH-11, but inhibition of c-jun-NH2-kinase did not prevent cell death induced by the combination treatment. Reactive oxygen species, especially H2O2 were elevated following camptothecin treatment; and H2O2 enhanced cell death induced by CH-11. The antioxidants glutathione and N-acetyl-cysteine prevented cell death induced by camptothecin + CH-11. These findings show that camptothecin synergizes with Fas activation to induce glioblastoma apoptosis via a mechanism involving reactive oxygen species and oxidative stress pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据