4.6 Article

Prediction of collective diffusion coefficient of bovine serum albumin in aqueous electrolyte solution with hard-core two-Yukawa potential

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 7, 期 12, 页码 2423-2428

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b500371g

关键词

-

向作者/读者索取更多资源

A new method to predict concentration dependence of collective diffusion coefficient of bovine serum albumin (BSA) in aqueous electrolyte solution is developed based on the generalized Stokes-Einstein equation which relates the diffusion coefficient to the osmotic pressure. The concentration dependence of osmotic pressure is evaluated using the solution of the mean spherical approximation for the two-Yukawa model fluid. The two empirical correlations of sedimentation coefficient are tested in this work. One is for a disordered suspension of hard spheres, and another is for an ordered suspension of hard spheres. The concentration dependence of the collective diffusion coefficient of BSA under different solution conditions, such as pH and ionic strength is predicted. From the comparison between the predicted and experimental values we found that the sedimentation coefficient for the disordered suspension of hard spheres is more suitable for the prediction of the collective diffusion coefficients of charged BSA in aqueous electrolyte solution. The theoretical predictions from the hard-core two-Yukawa model coupled with the sedimentation coefficient for a suspension of hard spheres are in good agreement with available experimental data, while the hard sphere model is unable to describe the behavior of diffusion due to its neglect of the double-layer repulsive charge-charge interaction between BSA molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据