4.6 Article

Surface analysis of erodible multilayered polyelectrolyte films: Nanometer-scale structure and erosion profiles

期刊

LANGMUIR
卷 21, 期 13, 页码 5803-5811

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la050596+

关键词

-

资金

  1. NIBIB NIH HHS [EB027469] Funding Source: Medline

向作者/读者索取更多资源

Atomic force microscopy (AFM) and scanning electron microscopy (SEM) coupled with ellipsometry have been used to characterize the microscale and nanoscale structures of erodible multilayered films fabricated from degradable polyamine 1 and either sodium poly(styrene sulfonate) (SPS) or plasmid DNA. Striking differences were found in the topography, structures, and erosion profiles of these two materials upon incubation in PBS buffer at 37 degrees C. For films fabricated from SPS, AFM data are consistent with an erosion process that occurs uniformly without the generation of holes or pits over large, micrometer-scale areas. By contrast, films fabricated from plasmid DNA undergo structural rearrangements to present surface-bound particles ranging in size from 50 to 400 nm. Additional characterization of these particulate structures by SEM suggested that they are interpenetrated with or fused to underlying polyelectrolyte layers on the silicon surface, providing a potential mechanism to manipulate the adhesive forces with which these particles are bound to the surface. The erosion profile observed for polymer 1/SPS films suggests that it may be possible to design assemblies that release two film components with well-defined release kinetics. In the context of gene delivery, the presentation of condensed DNA as nanoparticles at these surfaces may be advantageous with respect to stimulating the internalization and processing of DNA by cells. A quantitative understanding of the factors influencing the fabrication, structure, and erosion profiles of these materials will be useful for the design of multilayered assemblies for specific applications in which controlled film erosion or the release of therapeutic materials is desired.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据