4.6 Article

Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 109, 期 24, 页码 5266-5274

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp0509663

关键词

-

向作者/读者索取更多资源

Exciton diffusion and photoluminescence quenching in conjugated polymer/fullerene heterostructures are studied by time-resolved photoluminescence. It is observed that heterostructures consisting of a spin-coated poly(p-phenylene vinylene) (PPV)-based derivative and evaporated C-60 are ill-defined because of diffusion of C60 into the polymer, leading to an overestimation of the exciton diffusion length. This artifact is resolved by the use of a novel, thermally side-chain polymerizing and cross-linking fullerene derivative (F2D) containing two diacetylene moieties, forming a completely immobilized electron acceptor layer. With this heterostructure test system, an exciton diffusion length of 5 +/- 1 nm is derived for this PPV derivative from time-integrated luminescence quenching data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据