4.6 Article

Strong-coupling solver for the quantum impurity model

期刊

PHYSICAL REVIEW B
卷 72, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.045111

关键词

-

向作者/读者索取更多资源

We propose a fast impurity solver for the general quantum impurity model based on the perturbation theory around the atomic limit, which can be used in combination with the local density approximation (LDA) and the dynamical mean-field theory (DMFT). We benchmark the solver in the two-band Hubbard model within DMFT against quantum Monte Carlo (QMC) and numerical renormalization-group (NRG) results. We find that the solver works very well in the paramagnetic Mott insulator phase. We also apply this impurity solver to the DMFT study of the antiferromagnetic phase transition in the unfrustrated Bethe lattice. The Neel temperature obtained by the fast impurity solver agrees very well with the QMC results in the large Hubbard U limit. The method is a promising tool to be used in combination with the LDA+DMFT to study Mott insulators starting from first principles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据