4.6 Article

Quantum compass model on the square lattice

期刊

PHYSICAL REVIEW B
卷 72, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.024448

关键词

-

向作者/读者索取更多资源

Using exact diagonalizations, Green's function Monte Carlo simulations and high-order perturbation theory, we study the low-energy properties of the two-dimensional spin-1/2 compass model on the square lattice defined by the Hamiltonian H=-Sigma(r)(J(x)sigma(x)(r)sigma(x)(r+ex)+J(z)sigma(z)(r)sigma(z)(r+ez)). When J(x)not equal J(z), we show that, on clusters of dimension L x L, the low-energy spectrum consists of 2(L) states which collapse onto each other exponentially fast with L, a conclusion that remains true arbitrarily close to J(x)=J(z). At that point, we show that an even larger number of states collapse exponentially fast with L onto the ground state, and we present numerical evidence that this number is precisely 2 x 2(L). We also extend the symmetry analysis of the model to arbitrary spins and show that the twofold degeneracy of all eigenstates remains true for arbitrary half-integer spins but does not apply to integer spins, in which cases the eigenstates are generically nondegenerate, a result confirmed by exact diagonalizations in the spin-1 case. Implications for Mott insulators and Josephson junction arrays are briefly discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据