4.6 Article

Understanding the complexity of a catalyst synthesis: Co-precipitation of mixed Cu,Zn,Al hydroxycarbonate precursors for Cu/ZnO/Al2O3 catalysts investigated by titration experiments

期刊

APPLIED CATALYSIS A-GENERAL
卷 392, 期 1-2, 页码 93-102

出版社

ELSEVIER
DOI: 10.1016/j.apcata.2010.10.031

关键词

Cu/ZnO/Al2O3 catalyst; Preparation; Co-precipitation; Precursor; Methanol synthesis

资金

  1. German Federal Ministry of Education and Research (BMBF) [FKZ 01RI0529]

向作者/读者索取更多资源

Co-precipitation of Cu,Zn,(Al) precursor materials is the traditional way of synthesizing Cu/ZnO/(Al2O3) catalysts for industrial methanol synthesis. This process has been investigated by titration experiments of nitrate and formate solutions. It was found that the solidification of the single components proceeds sequentially in case of nitrates: Cu2+ is precipitated at pH 3 and Zn2+ (as well as Al3+) near pH 5. This behavior prevents a homogeneous distribution of all metal species in the initial precipitate upon gradual increase of pH and requires application of the constant pH micro-droplet method. This effect is less pronounced if formate instead of nitrate is used as counter ion. This can be explained by the strong modification of the hydrolysis chemistry of the metal ions due to the presence of formate anions, which act as ligands and buffer. A formate-derived Cu/ZnO/Al2O3 catalyst was more active in methanol synthesis compared to a nitrate-derived sample although the same crystallographic phases were present in the precursor after co-precipitation and ageing. The effect of precipitation temperature was studied for the binary CuZn nitrate model system. Increasing the temperature of co-precipitation above 50 degrees C leads to down-shift of the precipitation pH of Zn2+ by a full unit. Thus, in warm solutions more acidic conditions can be used for complete co-precipitation, while in cold solutions, some Zn2+ may remain dissolved in the mother liquor at the same precipitation pH. The higher limit of temperature is given by the tendency of the initial Cu precipitate towards formation of CuO by oxolation. On the basis of these considerations, the empirically determined optimal pH and temperature conditions of the industrially applied synthesis can be rationalized. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据