4.6 Article

Electronic and mechanical properties of planar and tubular boron structures

期刊

PHYSICAL REVIEW B
卷 72, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.045434

关键词

-

向作者/读者索取更多资源

We report the results of first-principles calculations showing that boron can form a wide variety of metastable planar and tubular forms with unusual electronic and mechanical properties. The preferred planar structure is a buckled triangular lattice that breaks the threefold ground state degeneracy of the flat triangular plane. When the plane is rolled into a tube, the ground state degeneracy leads to a strong chirality dependence of the binding energy and elastic response, an unusual property that is not found in carbon nanotubes. The achiral (n,0) tubes derive their structure from the flat triangular plane. The achiral (n,n) boron nanotubes arise from the buckled plane, and have large cohesive energies and different structures as a result. (n,n) boron nanotubes have an internal relaxation mechanism that results in a very low Poisson ratio. The strong variation in elastic properties of boron nanotubes makes them the mechanical analogue of carbon nanotubes, and may make them ideal candidates for applications in composite materials and nanoelectromechanical systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据