4.6 Article

Effects of melt temperature and casting speed on the structure and defect formation during direct-chill casting of an Al-Cu alloy

向作者/读者索取更多资源

A thorough experimental investigation of the effects of melt temperature and casting speed on the structure and defect formation during the steady and nonsteady stages of direct-chill (DC) casting of an Al-2.8 pct Cu alloy is performed. In addition, the temperature and melt-flow distributions in the sump of billets cast at different melt temperatures are numerically simulated and used in the discussion on the experimental results. Apart from already known phenomena such as the coarsening of the structure, deepening of the sump, and increased probability of bleed-outs during DC casting with increased casting temperature, a few new observations are made. The increased melt temperature is shown to increase the severity of subsurface segregation, whereas the macrosegregation in the rest of the billet remains virtually unaffected. Hot-tearing susceptibility is strongly diminished by an increased melt superheat. The amount and distribution of floating grains is demonstrated to depend on both the melt temperature and the casting speed. The porosity was found to only slightly depend on the melt temperature. The amount of nonequilibrium eutectic in the center of the billet increases with increasing melt temperature. The effects of melt temperature on the dimensions of the sump, transition region, and mushy zone and on the melt-flow pattern in the sump are discussed and used in the interpretation of experimentally observed phenomena.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据